R1.01 – Prog#9 – Exercice 5

Insérer dans le code suivant vos algorithmes de tri.
Modifier le .pro en ajoutant la ligne LIBS += -pthread

Puis faite divers tests en faisant varier les paramètres d’entrée :

  1. la taille des vecteurs;
  2. le nombre de vecteurs différents;
  3. nombre d’itérations par vecteur;
#include <iostream>
#include <vector>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#include <algorithm>
#include <thread>
#include <cassert>

using namespace std;
typedef vector <vector<double>> CMatrix;

CMatrix Mat;

void selectSort (vector <unsigned> & tab){
    //TODO
}

void insertSort (vector <unsigned> & vUint)
{
//TODO
}

void bubbleSort (vector <unsigned> & vUint)
{
//TODO
}

void countingSort (vector <unsigned> & vUint)
{
//TODO
}

void languageSort (vector<unsigned> & VUint)
{
    sort (VUint.begin(), VUint.end());
}

void initMat (unsigned NbColumns)
{
    Mat.resize(5, vector <double> (NbColumns));
}

//http://stackoverflow.com/questions/2962785/c-using-clock-to-measure-time-in-multi-threaded-programs
void protoGenericSort(void (*mySort) (vector <unsigned> & vUint), const vector <unsigned> & vUint, unsigned NbFois, unsigned PosMat, unsigned VectNum)
{
    for (unsigned i (0); i < NbFois; ++i)
    {
        vector <unsigned> copyVUint (vUint);
        struct timespec start, finish;
        double elapsed;
        clock_gettime(CLOCK_MONOTONIC, &start);
        mySort (copyVUint);
        clock_gettime(CLOCK_MONOTONIC, &finish);
        elapsed = (finish.tv_sec - start.tv_sec);
        elapsed += (finish.tv_nsec - start.tv_nsec) / 1000000000.0;
        Mat [PosMat][i + NbFois * VectNum] = elapsed;
    }
}

void traiterResultats (const unsigned & nbElemAEnlever)
{
    for (vector <double> & UneLigne : Mat)
    {
        //tri
        sort (UneLigne.begin(), UneLigne.end());
        //suppresion des éléments non significatifs
        UneLigne = vector <double> (UneLigne.begin() + nbElemAEnlever / 2, UneLigne.end() - nbElemAEnlever / 2 );
        //plus petit temps
        double min (UneLigne[0]);
        //plus grand temps
        double max (UneLigne[UneLigne.size()-1]);
        //temps median
        double med (UneLigne[UneLigne.size()/2]);

        //On assigne les valeurs memorisees aux 3 premières cases
        UneLigne[0] = min;
        UneLigne[1] = med;
        UneLigne [2] = max;
    }
    //Affichage
    cout << setw (20) << "Tri" << setw (10) << "Min" << setw (10) << "Med" << setw (10) << "Max" << endl;
    vector<string> VMetode {"Selection", "Insertion", "Bulles", "comptage", "Langage"};
    for (unsigned i (0); i < VMetode.size(); ++i)
        cout << setw (20) << VMetode[i] << setw (10) << setprecision(6) << Mat[i][0] << setw (10) << setprecision(6) << Mat[i][1] << setw (10) << setprecision(6) << Mat[i][2] << endl;

}

int main(int argc, char *argv[])
{
    if (argc != 4)
    {
        cerr << "boulette !\n utilisation : " << argv [0] << " (1) NbElem par vecteur (2) Nb de vecteurs differents (3) Nb itérations par vecteur" << endl;
        return 1;
    }

    unsigned NbElem (stoul(argv[1]));
    unsigned NbVecteurs (stoul(argv[2]));
    unsigned NbFois (stoul(argv[3]));

    srand (time(NULL));
    vector <unsigned> VUInt (NbElem);
    initMat (NbFois * NbVecteurs);


    for (unsigned i (0); i < NbVecteurs; ++i)
    {
        for (auto & Val : VUInt)
            Val = rand () % (VUInt.size() * 10);

        thread th1 (protoGenericSort, selectSort, VUInt, NbFois, 0, i);
        thread th2 (protoGenericSort, insertSort, VUInt, NbFois, 1, i);
        thread th3 (protoGenericSort, bubbleSort, VUInt, NbFois, 2, i);
        thread th4 (protoGenericSort, countingSort, VUInt, NbFois, 3, i);
        thread th5 (protoGenericSort, languageSort, VUInt, NbFois, 4, i);
        th1.join();
        th2.join();
        th3.join();
        th4.join();
        th5.join();
        cout << i << "fini" << endl;
    }

    cout << "Taille des vecteurs : " << NbElem << "\nNb de vecteurs : " << NbVecteurs << "\nNb iterations par vecteur : " << NbFois << endl;
    //On traite les résultats en supprimant 10% des éléments
    traiterResultats (NbFois * NbVecteurs / 10);
    return 0;
}